公司简介

"科技成就生活之美"
"科技成就生活之美"
- 搭建并维护用于端到端和 VLA 自动驾驶模型的强化学习闭环训练流程。
- 设计和实现支持 RL 闭环训练与评测的仿真环境。
- 开发高效可扩展的工具链,包括数据管理、实验调度和性能监控。
- 对强化学习算法进行优化,提升训练效率、可扩展性及实时部署能力。
- 与研究团队协作,将新的 RL 方法集成到闭环系统中。
- 记录开发流程与基准结果,提供部署相关的技术支持。
- Build and maintain closed-loop reinforcement learning training pipelines for E2E and VLA autonomous driving models.
- Design and implement simulation environments to support RL-based closed-loop training and evaluation.
- Develop scalable toolchains for dataset management, experiment orchestration, and performance monitoring.
- Optimize RL algorithms for efficiency, scalability, and real-time deployment.
- Collaborate with research teams to integrate new RL methods into the closed-loop system.
- Document development workflows, benchmark results, and provide technical support for deployment.
1.计算机、机器学习、自动化、机器人等相关专业硕士或博士学历。
2. 具备强化学习、仿真环境、大规模训练流程等相关经验。
3. 熟悉自动驾驶仿真平台(如 CARLA、LGSVL、SUMO, GPUDrive, Waymax)或机器人仿真环境。
4. 具备扎实的软件工程能力,精通 Python/C++,有分布式训练与工具链开发经验。
5. 熟悉容器化技术(Docker、Kubernetes)及实验管理工具。
6. 具备良好的问题解决能力和团队协作精神,自驱动。
7. 具备良好的英文读写能力。
1. Master’s/Ph.D. degree in Computer Science, Software Engineering, or related fields.
2. Solid background in reinforcement learning, simulation environments, and large-scale training pipelines.
3. Hands-on experience with autonomous driving simulators (e.g., CARLA, LGSVL, SUMO, GPUDrive, WayMax) or robotics simulators.
4. Strong software engineering skills in Python/C++; experience in distributed training and toolchain development.
5. Familiarity with containerization (Docker, Kubernetes) and experiment management tools.
6. Good problem-solving skills, self-driven, and team-oriented.
7. English reading/writing proficiency.